Magnesium is what type of element




















Melting point The temperature at which the solid—liquid phase change occurs. Boiling point The temperature at which the liquid—gas phase change occurs.

Sublimation The transition of a substance directly from the solid to the gas phase without passing through a liquid phase. Relative atomic mass The mass of an atom relative to that of carbon This is approximately the sum of the number of protons and neutrons in the nucleus.

Where more than one isotope exists, the value given is the abundance weighted average. Isotopes Atoms of the same element with different numbers of neutrons. CAS number The Chemical Abstracts Service registry number is a unique identifier of a particular chemical, designed to prevent confusion arising from different languages and naming systems.

Murray Robertson is the artist behind the images which make up Visual Elements. This is where the artist explains his interpretation of the element and the science behind the picture. Where the element is most commonly found in nature, and how it is sourced commercially. Atomic radius, non-bonded Half of the distance between two unbonded atoms of the same element when the electrostatic forces are balanced.

These values were determined using several different methods. Covalent radius Half of the distance between two atoms within a single covalent bond. Values are given for typical oxidation number and coordination. Electron affinity The energy released when an electron is added to the neutral atom and a negative ion is formed. Electronegativity Pauling scale The tendency of an atom to attract electrons towards itself, expressed on a relative scale. First ionisation energy The minimum energy required to remove an electron from a neutral atom in its ground state.

The oxidation state of an atom is a measure of the degree of oxidation of an atom. It is defined as being the charge that an atom would have if all bonds were ionic.

Uncombined elements have an oxidation state of 0. The sum of the oxidation states within a compound or ion must equal the overall charge. Data for this section been provided by the British Geological Survey.

An integrated supply risk index from 1 very low risk to 10 very high risk. This is calculated by combining the scores for crustal abundance, reserve distribution, production concentration, substitutability, recycling rate and political stability scores.

The percentage of a commodity which is recycled. A higher recycling rate may reduce risk to supply. The availability of suitable substitutes for a given commodity. The percentage of an element produced in the top producing country. The higher the value, the larger risk there is to supply. The percentage of the world reserves located in the country with the largest reserves.

A percentile rank for the political stability of the top producing country, derived from World Bank governance indicators. A percentile rank for the political stability of the country with the largest reserves, derived from World Bank governance indicators. Specific heat capacity is the amount of energy needed to change the temperature of a kilogram of a substance by 1 K. A measure of the stiffness of a substance. It provides a measure of how difficult it is to extend a material, with a value given by the ratio of tensile strength to tensile strain.

A measure of how difficult it is to deform a material. It is given by the ratio of the shear stress to the shear strain. A measure of how difficult it is to compress a substance. It is given by the ratio of the pressure on a body to the fractional decrease in volume. A measure of the propensity of a substance to evaporate. It is defined as the equilibrium pressure exerted by the gas produced above a substance in a closed system.

This Site has been carefully prepared for your visit, and we ask you to honour and agree to the following terms and conditions when using this Site.

Copyright of and ownership in the Images reside with Murray Robertson. The RSC has been granted the sole and exclusive right and licence to produce, publish and further license the Images.

The RSC maintains this Site for your information, education, communication, and personal entertainment. You may browse, download or print out one copy of the material displayed on the Site for your personal, non-commercial, non-public use, but you must retain all copyright and other proprietary notices contained on the materials. You may not further copy, alter, distribute or otherwise use any of the materials from this Site without the advance, written consent of the RSC.

The images may not be posted on any website, shared in any disc library, image storage mechanism, network system or similar arrangement. Pornographic, defamatory, libellous, scandalous, fraudulent, immoral, infringing or otherwise unlawful use of the Images is, of course, prohibited. If you wish to use the Images in a manner not permitted by these terms and conditions please contact the Publishing Services Department by email. If you are in any doubt, please ask. Commercial use of the Images will be charged at a rate based on the particular use, prices on application.

In such cases we would ask you to sign a Visual Elements licence agreement, tailored to the specific use you propose.

The RSC makes no representations whatsoever about the suitability of the information contained in the documents and related graphics published on this Site for any purpose. All such documents and related graphics are provided "as is" without any representation or endorsement made and warranty of any kind, whether expressed or implied, including but not limited to the implied warranties of fitness for a particular purpose, non-infringement, compatibility, security and accuracy.

In no event shall the RSC be liable for any damages including, without limitation, indirect or consequential damages, or any damages whatsoever arising from use or loss of use, data or profits, whether in action of contract, negligence or other tortious action, arising out of or in connection with the use of the material available from this Site.

Nor shall the RSC be in any event liable for any damage to your computer equipment or software which may occur on account of your access to or use of the Site, or your downloading of materials, data, text, software, or images from the Site, whether caused by a virus, bug or otherwise.

Jump to main content. Periodic Table. Glossary Allotropes Some elements exist in several different structural forms, called allotropes. Glossary Group A vertical column in the periodic table. Fact box. Glossary Image explanation Murray Robertson is the artist behind the images which make up Visual Elements. Appearance The description of the element in its natural form.

Biological role The role of the element in humans, animals and plants. Natural abundance Where the element is most commonly found in nature, and how it is sourced commercially. Uses and properties. Image explanation. The image is inspired by chlorophyll, the molecule contained in green plants that enables them to photosynthesise.

Chlorophyll contains a single atom of magnesium at its centre. A silvery-white metal that ignites easily in air and burns with a bright light. Magnesium is one-third less dense than aluminium. It improves the mechanical, fabrication and welding characteristics of aluminium when used as an alloying agent. These alloys are useful in aeroplane and car construction. Magnesium is used in products that benefit from being lightweight, such as car seats, luggage, laptops, cameras and power tools.

It is also added to molten iron and steel to remove sulfur. Magnesium sulfate is sometimes used as a mordant for dyes. Magnesium hydroxide is added to plastics to make them fire retardant. Magnesium oxide is used to make heat-resistant bricks for fireplaces and furnaces. It is also added to cattle feed and fertilisers. Magnesium hydroxide milk of magnesia , sulfate Epsom salts , chloride and citrate are all used in medicine.

Chemical element, metallic, symbol Mg, situated in group IIa in the periodic table, atomic number: 12, atomic weight: 24, Magnesium is silvery white and very light. Magnesium is very chemically active, it takes the place of hydrogen in boiling water and a great number of metals can be produced by thermic reduction of its salts and oxidized forms with magnesium.

It joins together with most non-metals and almost every acid. Magnesium reacts only slightly or not at all with most of the alkalis and many organic substances, like hydrocarbons, aldehides, alcohols, phenols, amines, esters and most of the oils. Used as a catalyst, magnesium promotes organic reactions of condensation, reduction, addition and dehalogenization. It was used for a long time for synthesizing special and complex organic components by the well-known Grignard reaction.

The main ingredients of the alloys are: aluminum, manganese , zircon , zinc , rare-earth metals and thorium. Magnesium compounds are used as refractory material in furnace linings for producing metals iron and steel, nonferrous metals , glass, and cement.

It also has many useful chemical and metallurgic properties, which make it appropriate for many other non-structural applications.

Magnesium components are widely used in industry and agriculture. Other uses include: removal of sulphur form iron and steel, photoengraved plates in the printing industry; reducing agent for the production of pure uranium and other metals from their salts; flashlight photography, flares, and pyrotechnics. Dolomite and magnesite are mined to the extent of 10 million tonnes per year, in countries such as China, Turkey, North Korea, Slovakia, Austria, Russia and Greece. There is no evidence that magnesium produces systemic poisoning although persistent over-indulgence in taking magnesium supplements and medicines can lead to muscule weakness, lethargy and confusion.

Inhalation: dust may irritate mucous membranes or upper respiratory tract. Eyes: mechanical injury or particle may embed in eye. Viewing of burning magnesium powder without fire glasses may result in "Welder's flash", due to intense white flame.

Skin: embedding of particle in skin. Although it is the eighth most abundant element in the universe and the seventh most abundant element in the earth's crust , magnesium is never found free in nature. Magnesium was first isolated by Sir Humphry Davy, an English chemist, through the electrolysis of a mixture of magnesium oxide MgO and mercuric oxide HgO in Every cubic kilometer of seawater contains about 1. Magnesium burns with a brilliant white light and is used in pyrotechnics, flares and photographic flashbulbs.

Magnesium is the lightest metal that can be used to build things, although its use as a structural material is limited since it burns at relatively low temperatures. Magnesium is frequently alloyed with aluminum , which makes aluminum easier to roll, extrude and weld. Magnesium-aluminum alloys are used where strong, lightweight materials are required, such as in airplanes, missiles and rockets.

Cameras, horseshoes, baseball catchers' masks and snowshoes are other items that are made from magnesium alloys. Magnesium oxide MgO , also known as magnesia, is the second most abundant compound in the earth's crust.



0コメント

  • 1000 / 1000